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Background
n Federated learning

q A promising learning paradigm proposed to protect user data privacy
q Collaboratively learn a model while keeping all the data in local

n Global model distribution
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Background
n Federated learning

q A promising learning paradigm proposed to protect user data privacy
q Collaboratively learn a model while keeping all the data in local

n Global model distribution
n Local training
n Local updates uploading
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Background
n Privacy leakage from model updates 

q Untrusted server or malicious third-parties has access to the model updates
q Adversaries attempt to infer the sensitive information from model updates

n Model inversion attack[1]

n Property inference attack[2]

n Membership inference attack[3]
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[1] J. Geiping, H. Bauermeister, H. Dr ̈oge, and M. Moeller, “Inverting gradients - how easy is it to break privacy in federated learning?” in Proc. of NeurIPS’20, 2020.
[2] L. Melis, C. Song, E. De Cristofaro and V. Shmatikov, “Exploiting Unintended Feature Leakage in Collaborative Learning,” in Proc. of IEEE SP’19, 2019.
[3] M. Nasr, R. Shokri and A. Houmansadr, “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and 
Federated Learning,” in Proc. of IEEE SP’19, 2019.



Background
n Privacy protection with local differential privacy (LDP)

q 𝜖, 𝛿 -LDP

q Add Gaussian noise to the local data[1] or local model updates[2] to achieve LDP

q Smaller privacy budget 𝜖 indicates stronger privacy guarantee and leads to 
higher level of perturbation
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A random mechanism 𝑀 satisfies (𝜖, 𝛿)-LDP if, for any two input data 𝑥 and 𝑥!, 
and any possible output 𝑦,

Pr 𝑀 𝑥 = 𝑦 ≤ 𝑒! Pr 𝑥" = 𝑦 + 	δ

[1] K. Fukuchi, Q. K. Tran, and J. Sakuma, “Differentially private empirical risk minimization with input perturbation,” in Proc. of DS’17, 2017
[2] Y. Zhao et al., “Local Differential Privacy-Based Federated Learning for Internet of Things,” in IEEE Internet of Things Journal, 2021



Background
n Robustness of federated learning is affected by LDP

q Robustness mainly refers to the capability to defend against 
adversarial attacks, e.g., backdoor attacks, poisoning attacks, etc.

q Positive effect: increased robustness with higher level of perturbation 
q Negative effect: decreased robustness with higher level of 

perturbation after accessing the balance area
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Figure 1. Robustness vs. Privacy[1]

How to allocate privacy budget to balance the robustness and 
privacy in federated learning?

[1] Yaowei Han, Yang Cao, and Masatoshi Yoshikawa. “Understanding the interplay between privacy and robustness in federated learning”. in arXiv, 2021.



Motivation
n Jointly consider robustness and privacy in federated learning

q LDP noise introduces uncertainty to the local training data
q Adversarial attacks generating noisy data also cause data uncertainty
q Connecting data uncertainty with privacy budget and adversarial attacks
q Collaboratively training a model under data uncertainty

n Challenge
q How to express data uncertainty explicitly?
q How to learn a model with data uncertainty?
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Motivation
n Our idea

q Leverage Distributionally Robust Optimization (DRO) 
n DRO enables to model the problem under uncertainty
n Aiming to find a solution 𝑥 that minimizes the worst-case cost under all possible 

distributions in the uncertainty set 𝒫:

q Construct the uncertainty set with Wasserstein Distance
n 𝒫 = 𝔹! 𝑃 = {𝑄:𝑊"(𝑄, 𝑃) ≤ 𝜌}
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Distributionally Robust and Private FL Problem
n Threat model

q Server: curious but honest
q Attacker: manipulate the training data of participants

n Poison the training sample
n Manipulate the label of training sample
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Distributionally Robust and Private FL Problem
n Privacy budget allocation model

q Monetary reward is required to incentivize local clients to contribute 
private information of data with some degree of privacy loss

n  

q Each client has the baseline of privacy loss 𝑏!
n  
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𝑏" 𝑏# 𝑏$

:
*+,

-

𝜖*,/ ⋅ 𝑝 ≤ 𝑉,
§ 𝜖#,%: allocated privacy budget for client 𝑖 in round 𝑘
§ 𝑝: unit price of privacy loss
§ 𝑉: monetary budget for privacy loss in each round

𝜖*,/ ≤ 𝑏* 𝜖",& 𝜖#,& 𝜖$,&



Distributionally Robust and Private FL Problem
n Local differentially private data model

q Add Gaussian noise to each data sample locally
n Original local dataset: 𝐷* ≜ 𝑥0 , 𝑦0 0+,

1&

n Differentially private local data set: �̃�* ≜ �̃�0 , 𝑦0 0+,
1&

q �̃�0: = 𝑥0 +𝑤*,/, where 𝑤*,/ ∼ 𝑁 0, 𝜎*,/2

n Distributionally robust local training model
q Uncertainty set 𝒫! consists of probability distributions generated from �̃�!
q To minimize the worst-case expected loss over 𝒫!

n  
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Distributionally Robust and Private FL Problem
n Problem formulation

q To maximize the model performance with limited privacy budget and 
individual privacy requirement constraints.

q DRPri problem is formulated as:
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How to construct the 
uncertainty set 𝓟𝒊,𝒌?



Uncertainty Set Construction for DRPri Problem
n Wasserstein distance based uncertainty set

q A Wasserstein ball with radius 𝜌!,# around the empirical distribution )𝔻!,# 
which represents the local noisy dataset )𝐷!,# .
n 𝒫*,/ = {𝔾*,/:W, 𝔾*,/ , �̃�* ≤ 𝜌*,/}

q Choose the value of 𝜌!,#
n Enabling the constructed uncertainty set 𝒫*,/ contains the true underlying local data 

distribution ℙ* with 1 − 𝛾 confidence level
n Obtain a proper 𝜌*,/ based on the measure concentration theorem[1]

q 𝜌),& = 𝜂) + 𝜎),&,
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§ 𝜎#,%: standard deviation of the added Gaussian noise
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[1] N. Fournier and A. Guillin, “On the rate of convergence in wasserstein distance of the empirical measure,” in Probability Theory and Related Fields, 2013.



Tractable Reformulation of DRPri Problem
n Reduce the computation overhead of the inner worst-case 

expectation problem of DRPri
q Lipschitz continuous loss function assumption

q The upper bound for the worst-case expectation problem
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Assumption 1. The loss function ℓ is 𝐺(𝜃)-Lipschitz continuous: for all 𝜉" and 𝜉#,
ℓ 𝜃, 𝜉" − ℓ 𝜃, 𝜉" ≤ 𝐺(𝜃) ⋅ 𝜉" − 𝜉# .

Lemma 1. Let Assumption 1 hold, then
𝑠𝑢𝑝

𝔾:,$(𝔾,/̃)12
𝔼𝔾{ℓ(𝑥, 𝜃, 𝑦)} ≤ 𝔼/̃{ℓ(𝑥, 𝜃, 𝑦)} + 𝐺(𝜃) ⋅ 𝜌.



Tractable Reformulation of DRPri Problem
n Reformulate DRPri problem with Lemma 1 to DRPri-W problem

n DRPri-W problem is computationally much easier than the DRPri 
problem
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Robust and Private Federated Learning Algorithm
n To solve DRPri-W problem in two steps

q Determine the privacy budget allocation strategy 𝜖
n Given a determined model Y𝜃, to derive an optimal 𝜖 with the DRPri-W problem

n A typical minimization problem and easy to solve.
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Robust and Private Federated Learning Algorithm
n To solve DRPri-W problem in two steps

q Derive the robust model 𝜃 with the differentially 
private data
n Each client performs distributionally robust local training 

with the allocated privacy budget.
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Theoretical Analysis
n Privacy analysis

q Privacy leakage of each training round
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Theorem 1. Let Assumption 2 and 3 hold and 𝜖),&, 𝛿),& > 0 for all 𝑖 = 1,… , 𝑁 and all 
𝑘 = 1,… , 𝐾. In Algorithm 1 , if we have

𝜎),&# = 𝑐
𝐺#𝑇𝑙𝑛 1/𝛿),&
𝑑) 𝑑) − 1 𝜇𝜖),&#

then the local model 𝜃),& learned in round 𝑘 satisfies 𝜖),&, 𝛿),& -local differential 
privacy for some constant 𝑐.



Theoretical Analysis
n Privacy analysis

q Privacy leakage of all training rounds

n Utility analysis
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Theorem 2. Let Assumption 2 and 3 hold and 𝜖),&, 𝛿),& > 0 for all 𝑖 = 1,… , 𝑁 and all 
𝑘 = 1,… , 𝐾. With 𝜎),& satisfies Theorem 1, the Algorithm 1 guarantees 𝑐3 𝐾𝜖4,&̃, 𝛿4,‾&
differential privacy for some constant 𝑐3, where 𝜖4,&̃ = 𝑚𝑎𝑥Q

R
𝜖),& ∣ ∀𝑖 = 1,… , 𝑁, ∀𝑘 =

1,… , 𝐾 .

Theorem 3. Let Assumption 2 to 4 hold and the value of the gradient is upper bounded with 𝐵 (i.e., 
𝛻ℓ(𝜃) ≤ 𝐵 ), with 𝜎),& satisfies Equation (20), we have

𝔼 ℓ 𝜃6 − ℓ∗ ≤
𝐿𝐵#

𝜇#𝐾
1 + 𝑝𝜎#

where 𝜎 = 𝑚𝑎𝑥 𝜎),& ∣ ∀𝑖 = 1,… , 𝑁, ∀𝑘 = 1,… , 𝐾 , 𝑝 is the dimension of each training data sample.



Evaluation
n Setup

q Training dataset and model
n Adult dataset with the logistics regression model and loan dataset with the multi layer 

perception model
q Attack model

n Backdoor attack
n Label flipping attack
n Membership inference attack

q Benchmarks
n FedAVG (baseline)
n Norm bounding (Norm) and adding Gaussian noise (Weak-DP)
n GeoMed (GM), Trimmed Mean (TM)
n LDP and CDP

The Hong Kong Polytechnic University 21



Evaluation
n Results

q Robustness
n RPFL (ours) improves the accuracy of the learned model by 3.39 times compared to 

the baseline FedAvg, and 0.76 times compared to the benchmark norm bounding.
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Evaluation
n Results

q Robustness
n RPFL (ours) can still achieve relatively high testing accuracy even when the number

of attackers is increased to 0.4.
n RPFL performs the best compared to the benchmarks, the testing accuracy of the 

learned model is improved up to 2.75 times compared to benchmarks
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Evaluation
n Results

q Privacy
n RPFL (ours) achieves almost the best privacy guarantee compared to the benchmarks, 

with an attack accuracy decreased up to 0.71 times
n RPFL (ours) shows better privacy and utility trade-off than other DP-related privacy-

preserving methods.
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Conclusion
n DRPri: Distributionally robust and private FL problem

q Leverage DRO to jointly consider robustness and privacy problem in 
federated learning

q Design an algorithm RPFL to solve the formulated problem with high 
robustness and privacy guarantee

n Experiment results show RPFL outperforms other defense 
methods in robustness with privacy guarantee.
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Thank you!
Q&A

Email: si-ping.shi@connect.polyu.hk
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